
Fractional-Overlap Declustered Parity: Evaluating Reliability for Storage Systems

Huan Ke, Haryadi S. Gunawi
University of Chicago

{huanke, haryadi}@uchicago.edu

Dominic Manno, David Bonnie, Bradley W. Settlemyer
Los Alamos National Laboratory
{dmanno,dbonnie,bws}@lanl.gov

Abstract—In this paper, we propose a flexible and practical
data protection scheme, fractional-overlap declustered parity
(FODP), to explore the trade-offs between fault tolerance and
rebuild performance. Our experiments show that FODP is able
to bring forth up to 99% less probability of data loss in the
presence of various failure regimes. Furthermore, by adding
one additional spare drive capacity within each server, FODP
yields up to 99% reduction in granularity of data loss.

1. Introduction

The emergence of Big Data as a major resource sup-
porting scientific discovery, business intelligence, and social
media has led to the creation of massive storage systems
[1], [2], [3], [4] both in cloud infrastructure and in on-
premise data centers. These storage systems often incorpo-
rate hundreds or thousands of storage nodes and tens of
thousands of spinning disks. To support the massive storage
capacities required to support Big Data analytics disk drive
vendors are increasing the capacity of common disk drives
with 16TB and 20TB drives commonplace and 24TB drives
announced for 2021. At the same time, disk enclosures have
also increased in size and now commonly house 104 or 106
drives in only 4U of rack space with current racks typically
42U or 48U tall. Thus, within a single data center rack it
has become commonplace to provide greater than 20PB of
data capacity provided by more than 1000 disk drives and
data centers may host hundreds or thousands of such racks
to support modern digital data.

While the number of disks in data centers is growing,
disk deployments are becoming less reliable due to increases
in track density, enclosure density and data center trends
toward operating disks in more extreme environments. Dis-
tributed storage systems also introduce new failure modes
such as rack failures [5], [6], cascading failures [7], [8],
[9], and power and cooling failures [10] that trigger the loss
of multiple storage system components within compressed
time windows. In order to make data services continu-
ously available for both ingest and analysis it has become
necessary to employ data reliability schemes that protect
against multiple types and sources of failures. Many existing
reliability schemes work on two extremes, either enhancing
the rebuild performance [11], [12], [13] or improving fault
tolerance [14], [15], but how the interactions between fault
tolerance and rebuild time together impact system reliability

Figure 1. Comparison of data layouts in RAID-6 and FODP, where 2 + 2
erasure code (EC) represents 2 data and 2 parity blocks configuration,
which can tolerate up to 2 failures. RAID-6 separates disks into 4 inde-
pendent disk arrays while FODP comprises of 8 disk subsets.

is still unclear. Motivated by that, we design a practical and
flexible tool, fractional-overlap declustered parity (FODP)
to explore the trade-offs between the number of failure
domains and rebuild performance. This gives us fine-grained
control to accommodate different reliability requirements
and system sizes. By utilizing Mutually Orthogonal Latin
Squares (MOLS), FODP can uniformly distribute data and
parity blocks across disks and map the given logical units
in the specified physical disks. This allows for adding ad-
ditional parity on top of the FODP data layout and which
can reduce the quantity of data loss during failure bursts. To
the best of our knowledge, this is the first work to achieve
the goal of reducing the probability of data loss in the
presence of correlated failures while significantly reducing
the magnitude of lost data.

2. Fractional-Overlap Declustered Parity

Traditional declustered parity originally used Balanced
Incomplete Block Designs (BIBD(v, k, λ)) [16], to dis-
tribute parity stripes of size k over v disks (e.g., declustered
layout), where λ is the number of disk sets that each pair-
wise combination of disks appears in and λ ≥ 1.When λ
is at least 1 it ensures that all disks are able to equally
participate in rebuilds because every disk has data over-
lapping with every other disk. For example, a declustered
parity scheme that maps 2+2 stripes into a 16 disk enclosure,
a λ value of 1 ensures that when a single disk fails the
15 remaining disks all participate equally in reading the
surviving blocks of each degraded stripe to rebuild the failed
disk. Less obvious is that the lower the λ value the more
total failures that can be tolerated. Figure 1(a) illustrates

this property using 16 disks and 4 non-overlapping 2+2
RAID6 arrays (i.e. the minimum possible λ). In this case
up to 8 disks can fail without data loss assuming that
those failures are distributed evenly across RAID groups.
Motivated by these observations, we propose fractional-
overlap declustered parity (FODP) λ < 1, which relaxes
the overlap constraint and allows disks to overlap less than
once with every other disk. As a result, many pair-wise
combinations exist, but a few pair-wise combinations are not
generated. This λ < 1 scheme enables a tradeoff between
rebuild performance and tolerating more disk failures by
adjusting λ between the minimum and 1. Figure 1(b) re-
organizes the RAID-6 data layout by adding 4 declustered
disk subsets (e.g., the last 4 rows) in yellow and the 8 shaded
failures are still tolerated, but each disk in FODP is involved
in two disk subsets (i.e. 6 disks are able to participate in the
reconstruction), which make the rebuild 2x faster than the
RAID protection scheme.

λmin λ < 1 λ = 1 λ > 1

Rebuild Efficiency L M H H
Fault Tolerance H H M L

TABLE 1. λ COMPARISON. H REPRESENTS HIGH, M REPRESENTS
MEDIUM, AND L REPRESENTS LOW

Table 1 compares the trade-off space for different λ. In
the case of λmin, each disk is involved in a single disk
subset, which is identical to a clustered RAID protection
scheme with high failures tolerance and slow disk rebuild.
The case of λ < 1 represents FODP, where placement
groups only partially overlap which brings moderate rebuild
performance and high fault tolerance. In the case of λ = 1,
it is a special type of full declustering [17] that tolerates
more disk failures compared to the case of λ > 1 with
identical rebuild performance. Lastly, λ > 1 is widely used
in declustered parity (DP) schemes and tolerates the fewest
disk failures.

2.1. FODP Construction

One practical limitation for λ = 1 DP placement
schemes is that they are hard to generate and are impossible
for many disk configurations (e.g. 8+2 parity with a 20 disk
enclosure). Because FODP relaxes the traditional constraint
and allows λ < 1 it is able to achieve tradeoffs similar to the
ideal DP configuration while also supporting more diverse
parity schemes and disk enclosure sizes. In order to describe
our latin squares approach of constructing FODP layouts we
first quantify the overlap fraction λ for each disk as below.

λ =
overlaps
v − 1

where each disk has (stripe-width-1) overlapping disks
within a disk subset, and the overlaps is decided by the
number of disk subsets * (stripe-width-1), which reflects
the fraction that covers the remaining surviving (v-1) disks.

Figure 2. FODP layout by mapping MOLS into the disk matrix.

Definition 1. A Latin square is a nxn array over n elements
such that each element appears only once in each row and
column.

We start with a 4x4 Latin square L1 in Figure 2, where
each row and column are over elements of [1, 2, 3, 4].
To utilize the Latin square L1, we organize the 16-disk
enclosure into a disk matrix where the number of row is
equal to stripe-width (e.g., rows 1, 2, 3, 4) and number of
columns is equal to the Latin square order n (e.g., columns
a, b, c, d). Similar to this, we specify columns a, b, c, d
for Latin squares in top. By matching the 4x4 Latin square
L1 with the 4x4 disk matrix, each row is able to represent
an independent 4-disk subset. For example, the first row
[1, 2, 3, 4] in red represents the coordinate [(1 a), (2 b),
(3 c), (4 d)], which translates into a new disk subset [D1,
D6, D11, D16]. Likewise, it’s the same for the other three
rows. Therefore, the Latin square L1 corresponds to 4 non-
overlapping disk subsets that cover the whole disk matrix
and the overlap fraction λ for each disk is 3/15.

Definition 2. Two latin squares L1 and L2 are called
mutually orthogonal when any ordered pair of entries from
each Latin square in the same row and column occurs
exactly once.

As explained above, L1 represents 4 non-overlapping
disk subsets, which would be the same for every other Latin
square. To generate more disk subsets, it is necessary to
use additional Latin squares. The only concern is avoiding
multiple overlaps with the existing disk subsets. In other
words, the L1 related disk subsets should overlap with L2

related disk subsets by at most one disk. Figure 2 illustrates
Mutually Orthogonal Latin Squares (MOLS) L1, L2 and
L3, where each row overlaps with each other row by at
most one overlapping element (e.g., the only overlapping
element of L11([1, 2, 3, 4]) and L21([1, 3, 4, 2]) is element
1). The idea behind it comes from unique order pair property
in Mutually orthogonal Latin squares, which guarantees the
single overlap property no matter how many Latin squares
we use. In essence, by applying more MOLS, we are able
to linearly increase the FODP overlap fraction λ. The n-
order MOLS is known to exist when n is a power of a
prime number [18]. Such valid n values exist for 4, 5, 7,
8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41,

43, 47, 49, 53, 59, 61, 64, 67, 71,73, 79, 81, 83, 89, 97 in
the range of 100. If the disk matrix is rectangular and the
number of columns meets the valid size in MOLS then this
approach ensures each disk is included in an equal number
of disk subsets guaranteeing an uniform and deterministic
data distribution. If the number of disks do not form a
rectangular matrix we can simply remove the last row of
disks and make certain to randomly substitute those disks
into subsequent MOLS. In this case additional overlaps
are possible and uneven data distributions may occur, but
all possible configurations are supported with similar fault
tolerance and rebuild characteristics to perfectly rectangular
matrices.

2.2. FODP-Plus-One

In FODP, if more than m failures occur simultaneously
within a single disk subset then all data in this subset will
be lost. Therefore, increasing the overlap fraction λ, which
increase the number of disk subsets, will increase the prob-
ability of data loss because the > m failures will hit one of
the subsets with a higher probability. Thus the total number
of disk subsets is a tradeoff between the probability of data
loss and the magnitude of data lost during a loss event.
FODP is originally designed for reducing the probability of
data loss with the property of λ < 1. To avoid the loss of
large amounts of data during a data loss event, we further
propose FODP-Plus-One to add a layer of parity on top of
the FODP stripes.

Figure 3. Additional parities P1, P2, P3, P4 on top of FODP stripes are
placed in round robin fashion.

In Figure 3 we see the first blocks (e.g., S00, S10...S11,0)
in FODP stripes are always placed in column a (e.g., disks
D1, D2, D3, D4), the second ones (e.g., S01, S11...S11,1)
are in column b, and so on. If we create an additional parity
Pi for the ith blocks in a set of FODP stripes, the parity
Pi is able to further protect against FODP stripe loss by
placing Pi on a disk in another column. This constructs
a two-dimensional parity scheme, but uses an additional
disk to store the vertical parity. Unlike existing schemes
like BIBD, PDDL [13], and dRAID [11], the ith blocks are
always spread over the disk enclosure because the additional
disk can be selected systematically. In the simplest ren-
dition FODP-Plus-One simply places the additional parity
data P1, P2, P3, P4 in round-robin fashion. A hypothetical
refinement is to perform round-robin across the disks not in
the original FODP disk subset, but the details of achieving
balance with this approach are complicated compared to the

round-robin approach presented here. Although the simple
round-robin placement cannot further reduce the probability
of data loss, it can maximally reduce the magnitude of
lost data. In this work we will limit our analysis to data
protection and address performance considerations in future
work.

Overall, FODP-Plus-One reduces the magnitude of data
loss because the additional parity on surviving drives can
recover large amounts of the lost data. Continuing our
example, assume D1, D6, and D11 fail simultaneously,
only the stripe S0 including blocks S00, S01, S02, and S03

on disks [D1, D6, D11, D16] will lose data. The parities
P1, P2, P3, P4 on surviving disks like D2, D3 D4, D5 and
so on can help recover the vulnerable stripes. As a result,
the magnitude of the lost data can be significantly reduced.
If we configure FODP with the maximal overlap fraction
within λ < 1, the total number of disk subsets is equal to
the number of disk drives v. With one additional spare drive
of capacity (e.g., v+1) the data lost is reduced by (v−f)/v
(where f is the number of disk failures).

3. Evaluation

In this section, we evaluate storage system reliability
by addressing the following questions: (1) how do failure
sizes and failure distributions impact reliability? (2) how
does the overlap fraction explore the trade-offs between
rebuild performance and fault tolerance? To mimic a real
storage system, we consider Los Alamos National Labora-
tory’s Campaign storage system [19] composed of 4 pods,
each of which consists of 12 servers and each server is
configured with two 84-disk JBODs (e.g., 168 disk drives
per server). Note that to keep the FODP as similar to
the Campaign storage systems 85% storage overhead we
evaluate the protection schemes as if the servers have 169
disks per server and with parity configured at 11 + 2.
This is simply an artifact of trying to match the existing
configuration most closely for fairer comparisons. To make
these results applicable to emerging disk drive technology
the simulation presented in this paper assumes that each disk
drive is equipped with dual actuators and 16TB capacity, and
the disk rebuild bandwidth has been set at approximately
50M/s and the copyback bandwidth is around 400MB/s.

3.1. Correlated Failures

Our study of correlated failures is limited due to the lack
of contemporary failure data. In this section, we present
a series of correlated failure models that model failures
arriving closely in time, and we later evaluate the impact
of different failure regimes on system designs.

3.1.1. Dense Failures. Some recent work [20] in high per-
formance computing systems shows that failures are highly
correlated in time resulting in time periods with higher
failure density. It observes that 75% of failures just occur
within 25% of the system lifetime. As a result, the periods
of higher failure density could result in a MTBF multiples

higher than the average. In particular, failures in [6], [21]
are sometimes time-correlated across hours and days due
to environmental effects, firmware bugs, or transient work-
loads. Although these correlations do not hold over the life
of systems, the existence of these highly correlated failures
within compressed time windows may make existing storage
system data protection schemes highly vulnerable to data
loss.

3.1.2. Batch Failures. The assumption that failures occur
separately from each other is not always valid because many
failure types can be traced to batches of components (e.g.
a run of disks manufactured with a less effective bearing
lubricant). As shown in [8], if one disk has failed in a batch,
it is more likely to trigger another disk failure in that same
batch. To study batch failures, [22], [23] model the initial
failures that happen randomly during the useful lifetime of
disks in an independent way while the cascading character-
istic results in failures that happen in rapid succession (e.g.,
10 times faster [9]).

Type Model
Dense failures Exp(1

MTBF
) || Poisson(1

MTBF
)

Batch failures Exp(1
MTBF

) & Exp(1
0.1∗MTBF

)

TABLE 2. POISSON AND EXPONENTIAL DISTRIBUTION MODELS USED
IN CORRELATED FAILURES.

Table 2 summarizes the failure models we will use in
this paper. For dense failures, we use two separate distri-
butions with failure events arriving according to a Poisson
distribution or Exponential distribution. For batch failures,
we use a model combining two Exponential distributions,
where first failure may trigger an additional failure stream
(e.g., 3 to 6 cascading failures [22]) that occurs at a 10x
faster failure rate.

3.2. Impact of Failures

To study the effects of failure sizes and distributions on
system reliability, we vary the percent of disk failures and set
the ratio of MTBF to MTTR at 0.5 to parameterize the dense
Poisson, dense Exponential, and batch cascade failures. We
compare multiple parity schemes including RAID, tradi-
tional declustered parity (DP), Single-Overlap Declustered
Parity(SODP), FODP (e.g., with maximal overlap fraction
13/14), and FODP+1.

Figure 4 shows the probability of data loss (PDL) by
varying the number of failed disks from 0.2% to 1.0%.
The probability of data loss increases with the percent of
failures for each failure distribution and protection scheme.
Interestingly, the probability of data loss in DP slightly
outperforms RAID for Poisson while RAID exceeds DP
in Exponential. We note that the Exponential distribution
results in more outlier failures which makes RAID, with
its higher fault tolerance, stand out even more. Likewise,
RAID is much more efficient than DP in batch failures,
where tolerating more failures is most important. Note that,

0

0

1

10

100

.2 .4 .6 .8 1.0P
ro

b
a
b
ili

ty
 o

f
D

a
ta

 L
o
s
s

Failures (%)

Poisson

.2 .4 .6 .8 1.0

Failures (%)

Exponential

.2 .4 .6 .8 1.0

Failures (%)

Batch Cascade

RAID
DP

FODP
SODP

Figure 4. Comparison of failure sizes and distributions. From left to right,
the figures show the probability of data loss (PDL) resulting from dense
Poisson, dense Exponential, and batch cascade failures.

FODP+1 only improves FODP with respect to the amount
of lost data instead of the probability of data loss, that is
why we just compare FODP and SODP. Overall, FODP ex-
periences almost the same probability of data loss as SODP
with slightly lower rebuild performance and higher fault
tolerance. Compared to RAID and DP, SODP and FODP
experience lower PDL in Poisson and Exponential dense
failures due to higher fault tolerance and faster rebuilds
while they have slightly higher PDL rates in batch cascading
failures where PDL is mainly governed by fault tolerance.

0

0

1

10

.2 .4 .6 .8 1.0

L
o
s
t
D

a
ta

 (
T

B
)

Failures (%)

Poisson

RAID FODP

.2 .4 .6 .8 1.0

Failures (%)

Exponential

SODP DP

.2 .4 .6 .8 1.0

Failures (%)

Batch Cascade

FODP+1

Figure 5. Comparison of the amount of lost data for each incident resulting
from dense Poisson, dense Exponential, and batch cascade failures.

Figure 5 compares the average amount of lost data when
a data loss event occurs. As discussed before, reducing the
number of failure domains can reduces the probability of
data loss at a cost of greater data lost during any data loss
event. As expected, RAID experiences the highest amount of
lost data, FODP and SODP have lower magnitudes of data
loss with DP losing the least data. As the number of failed
disks increases, the amount of lost data in RAID is slightly
increased while the lost data in DP is greatly increased
and even exceeds FODP and SODP in the presence of 1%
failures in above three failure distributions. In SODP and
FODP, additional failures increase the probability of data
loss rather than the amount of lost data, which indicates
that the data loss magnitude in FODP and SODP is not
highly sensitive to such small variation in failures. Likewise,
FODP+1 just experiences one data loss incident each time,
thus the amount of lost data remains the same in Poisson
and Exponential and just slightly increases in batch failures.
With one additional spare drive capacity within each server
FODP+1 not only reduces the probability of data loss
like SODP and FODP but also significantly reduces the
magnitude of data loss.

3.3. Impact of Overlap Fraction

To explore the effects of overlap fractions we adjust λ
using FODP to compare the rebuild time and probability of
data loss for Poisson, Exponential dense failures, and batch
cascade failures.

 0

 20

 40

 60

 80

 100

RAID λ=1/7 λ=2/7 λ=3/7 λ=4/7 λ=5/7 λ=6/7 SODP DP

R
e
b
u
ild

 T
im

e
 (

H
o
u
rs

)

Figure 6. Rebuild time comparison.

Figure 6 compares the rebuild time among RAID, FODP
with different overlap fractions λ (e.g., 1/7-6/7), SODP and
DP. As expected, there is a distinct correlation between over-
lap fraction and rebuild time. RAID takes the longest time
(e.g., 93.2 hours) to rebuild a single disk failure. FODP with
differing overlap fractions shows the diminishing rate of
increase rebuild time as it approaches it’s minimum rebuild
time at λ ≥ 1 configurations. We note that the improvement
in rebuild times is not linear, but logarithmically decreasing
due to the fixed amount of work being distributed over a
larger number of disks.

0
2
4
6
8

10
12
14

1/7 2/7 3/7 4/7 5/7 6/7SODP

P
D

L

Poisson

0.2MTTR 0.4MTTR

1/7 2/7 3/7 4/7 5/7 6/7SODP

Exponential

0.6MTTR 0.8MTTR

0

10

20

30

40

50

1/7 2/7 3/7 4/7 5/7 6/7SODP

P
D

L

Batch Cascade

Figure 7. The figure shows the probability of data loss (PDL) resulting from
1% disk loss due to dense Poisson, dense Exponential and batch cascade
failures.

Figure 7 compares the probability of data loss by varying
overlap fraction λ from the minima 1/14 (RAID) to the
maxima 14/14 (SODP) with 1% failures under various
MTBF to MTTR ratios. As we can see, the probability of
data loss in Poisson and Exponential failures decreases as
λ increases. More interestingly we see that the PDL curves
increase with λ up to some peak, but then decrease as λ
approaches 1. This phenomena is due to the time required
to achieve 1% disk failures and the rebuild rate of the
selected λ. With the MTBF to MTTR ratio set at 0.2 it
takes 22 hours for 1% of the disk population to fail. At
λ = 5/7 the disk rebuild time is reduced to 11 hours and
the PDL begins to decrease. We see this effect in all of the
Batch Cascade curves where, as the MTBF is increased, the
minimum necessary rebuild performance is decreased and
lower lambda values become viable though better rebuild
performance still provides incremental PDL improvements.

4. Related Work

Existing work for improving storage fault tolerance falls
into two categories: (1) adding redundancy, and (2) reducing
failure domains. In the case of adding redundancies, many
erasure codes [14], [24] layouts the data with one horizontal
and one vertical parity, which essentially protect data in
two dimensions. By applying this design principle, CORE
core creates additional vertical parities by XOR operations
cross objects in different stripes. Furthermore, Uber Parity
[25] and RAIDP [26] store the additional vertical parities
on small auxiliary storage devices like NVRAM attached
to disks. These local storage devices fail separately from
disks, which can be used to recover data when disk failures
overwhelm the single stripe redundancy. Copyset replication
[15] was designed for reducing failure domains in data
replication using three copies within large-scale clusters
composed of thousands of nodes.

Many approaches to enhancing the reconstruction per-
formance for declustered data have been described in lit-
erature. The construction of declustered layouts vary from
deterministic distribution schemes like [12], [27] for small
disk arrays to near-optimal schemes [11], [28] for large disk
arrays. Single-Overlap Declustered Parity [17] applies the
copyset idea to declustered parity to explore reducing the
number of failure domains for declustered parity to dramat-
ically improve fault tolerance while maintaining the identical
rebuild performance. FODP, presented here, provides a more
practical and flexible declustered parity scheme with similar
failure and rebuild characteristics. Unlike HACFS [29] to
use two different erasure codes, our FODP can adapt to dif-
ferent workload requirements with only one uniform erasure
code. Furthermore, by adding one additional parity on top
of FODP, our FODP plus one can dramatically reduce the
magnitude of lost data.

5. Conclusion

Due to trends in disk drives, enclosures, and deploy-
ments we believe we are entering a period where failure
events are becoming more common rather than less com-
mon. In this paper we revisit storage system fault tolerance
and rebuild performance under a diverse set of correlated
failure events. To study the joint effects of these reliability
characteristics this paper describes a practical and flexi-
ble declustered parity scheme, fractional-overlap declustered
parity (FODP), that enables the exploration of trade-offs
between rebuild performance and the number of failure
domains. Our experimental results suggest that equally em-
phasizing the two perspectives does not achieve a midpoint
in system reliability – and is sometimes the least reliable
configuration. Meanwhile, FODP can reduce probability of
data loss by up to 99% compared to declustered parity for
various failure regimes while FODP-Plus-One can further
reduce 99% of the magnitude of data loss with a single
additional spare drive capacity within each server.

Acknowledgments

This manuscript has been approved for unlimited release
and has been assigned LA-UR-20-27110. This work has
been co-authored by employees of Triad National Security,
LLC which operates Los Alamos National Laboratory under
Contract No. 89233218CNA000001 with the U.S. Depart-
ment of Energy/National Nuclear Security Administration.
The university authors were supported by funding from
NSF(grant #CNS-1563956).

The publisher, by accepting the article for publication,
acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of the manuscript,
or allow others to do so, for United States Government
purposes.

References

[1] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The hadoop distributed file system. In 2010 IEEE 26th
symposium on mass storage systems and technologies (MSST), pages
1–10. Ieee, 2010.

[2] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The
google file system. In Proceedings of the nineteenth ACM symposium
on Operating systems principles, pages 29–43, 2003.

[3] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and
Carlos Maltzahn. Ceph: A scalable, high-performance distributed file
system. In Proceedings of the 7th symposium on Operating systems
design and implementation, pages 307–320, 2006.

[4] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild
Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng
Wu, Huseyin Simitci, et al. Windows azure storage: a highly available
cloud storage service with strong consistency. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems Principles,
pages 143–157, 2011.

[5] Mi Zhang, Shujie Han, and Patrick PC Lee. A simulation analysis
of reliability in erasure-coded data centers. In 2017 IEEE 36th
Symposium on Reliable Distributed Systems (SRDS), pages 144–153.
IEEE, 2017.

[6] Daniel Ford, François Labelle, Florentina Popovici, Murray Stokely,
Van-Anh Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan.
Availability in globally distributed storage systems. 2010.

[7] Suman Nath, Haifeng Yu, Phillip B Gibbons, and Srinivasan Seshan.
Subtleties in tolerating correlated failures in wide-area storage sys-
tems. In NSDI, volume 6, pages 225–238, 2006.

[8] Jehan-François Pâris and Darrell DE Long. Using device diversity
to protect data against batch-correlated disk failures. In Proceedings
of the second ACM workshop on Storage security and survivability,
pages 47–52, 2006.

[9] Peter M Chen, Edward K Lee, Garth A Gibson, Randy H Katz,
and David A Patterson. Raid: High-performance, reliable secondary
storage. ACM Computing Surveys (CSUR), 26(2):145–185, 1994.

[10] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and Arkady
Kanevsky. Are disks the dominant contributor for storage failures?
a comprehensive study of storage subsystem failure characteristics.
ACM Transactions on Storage (TOS), 4(3):1–25, 2008.

[11] Zfs draid. https://github.com/openzfs/zfs/wiki/dRAID-HOWTO,
2016.

[12] Mark Holland and Garth Gibson. Parity declustering for continuous
operation in redundant disk arrays. Technical report, CARNEGIE-
MELLON UNIV PITTSBURGH PA SCHOOL OF COMPUTER
SCIENCE, 1992.

[13] Thomas JE Schwarz, Jesse Steinberg, and Walter A Burkhard. Per-
mutation development data layout (pddl). In Proceedings Fifth In-
ternational Symposium on High-Performance Computer Architecture,
pages 214–217. IEEE, 1999.

[14] Jehan-François Pâris, SJ Thomas JE Schwarz, Ahmed Amer, and
Darrell DE Long. Highly reliable two-dimensional raid arrays for
archival storage. In 2012 IEEE 31st International Performance
Computing and Communications Conference (IPCCC), pages 324–
331. IEEE, 2012.

[15] Asaf Cidon, Stephen Rumble, Ryan Stutsman, Sachin Katti, John
Ousterhout, and Mendel Rosenblum. Copysets: Reducing the fre-
quency of data loss in cloud storage. In 2013 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 13), pages 37–48, 2013.

[16] Block design. https://en.wikipedia.org/wiki/Block design.

[17] H. Ke, H. S. Gunawi, D. Bonnie, N. DeBardeleben, M. Grosskopf,
T. Grové, D. Manno, E. Moore, and B. Settlemyer. Extreme protection
against data loss with single-overlap declustered parity. In 2020 50th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pages 343–354, 2020.

[18] Raj Chandra Bose and Sharadchandra S Shrikhande. On the con-
struction of sets of mutually orthogonal latin squares and the falsity
of a conjecture of euler. Transactions of the American Mathematical
Society, 95(2):191–209, 1960.

[19] Peter Braam and Dave Bonnie. Campaign storage.

[20] Leonardo Bautista-Gomez, Ana Gainaru, Swann Perarnau, Devesh
Tiwari, Saurabh Gupta, Christian Engelmann, Franck Cappello, and
Marc Snir. Reducing waste in extreme scale systems through
introspective analysis. In 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 212–221. IEEE,
2016.

[21] Nezih Yigitbasi, Matthieu Gallet, Derrick Kondo, Alexandru Iosup,
and Dick Epema. Analysis and modeling of time-correlated failures in
large-scale distributed systems. In 2010 11th IEEE/ACM International
Conference on Grid Computing, pages 65–72. IEEE, 2010.

[22] Guillaume Aupy, Yves Robert, and Frédéric Vivien. Assuming
failure independence: are we right to be wrong? In 2017 IEEE
International Conference on Cluster Computing (CLUSTER), pages
709–716. IEEE, 2017.

[23] Mary Baker, Mehul Shah, David SH Rosenthal, Mema Roussopoulos,
Petros Maniatis, Thomas J Giuli, and Prashanth Bungale. A fresh look
at the reliability of long-term digital storage. In Proceedings of the 1st
ACM SIGOPS/EuroSys European Conference on Computer Systems
2006, pages 221–234, 2006.

[24] Mingqiang Li, Jiwu Shu, and Weimin Zheng. Grid codes: Strip-based
erasure codes with high fault tolerance for storage systems. ACM
Transactions on Storage (TOS), 4(4):15, 2009.

[25] Avani Wildani, Thomas JE Schwarz, Ethan L Miller, and Darrell DE
Long. Protecting against rare event failures in archival systems.
In 2009 IEEE International Symposium on Modeling, Analysis &
Simulation of Computer and Telecommunication Systems, pages 1–
11. IEEE, 2009.

[26] Eitan Rosenfeld, Aviad Zuck, Nadav Amit, Michael Factor, and Dan
Tsafrir. Raidp: replication with intra-disk parity. In Proceedings of
the Fifteenth European Conference on Computer Systems, pages 1–
17, 2020.

[27] Guangyan Zhang, Zican Huang, Xiaosong Ma, Songlin Yang, Zhufan
Wang, and Weimin Zheng. Raid+: deterministic and balanced data
distribution for large disk enclosures. In 16th {USENIX} Conference
on File and Storage Technologies ({FAST} 18), pages 279–294, 2018.

[28] John Fragalla. Improving Lustre OST performance with ClusterStor
GridRAID. In 2014 HPCAC Stanford HPC Exascale Conference,
2014.

[29] Mingyuan Xia, Mohit Saxena, Mario Blaum, and David A. Pease.
A tale of two erasure codes in HDFS. In 13th USENIX Conference
on File and Storage Technologies (FAST 15), pages 213–226, Santa
Clara, CA, February 2015. USENIX Association.

